Menu

蓝书习题·第4章·几何问题

post on 21 Dec 2017 about 9851words require 33min
CC BY 4.0 (除特别声明或转载文章外)
如果这篇博客帮助到你,可以请我喝一杯咖啡~

计算几何模板

1
2
3
4
5
Coord getCoord()
{
	lf x, y;
	return scanf("%lf%lf", &x, &y), Coord(x, y);
}

基础题目

Triangle Fun

按照题目意思的直接解法。

1
2
3
4
5
6
7
8
9
10
11
12
13
int main()
{
	int n;
	for(scanf("%d",&n); n--;)
	{
		Coord A=getCoord(),B=getCoord(),C=getCoord(),
		      D=B+(C-B)/3.0,E=C+(A-C)/3.0,F=A+(B-A)/3.0,
		      P=getLineIntersection(A,D,B,E),
		      Q=getLineIntersection(B,E,C,F),
		      R=getLineIntersection(C,F,A,D);
		printf("%.0f\n",fabs(Area2(P,Q,R)/2));
	}
}

可证明$\triangle ABC$的面积是$\triangle PQR$的 7 倍,于是有下面的解法。

1
2
3
4
5
6
7
8
int main()
{
	int n;
	for(scanf("%d",&n);
	        n--;
	        printf("%.0f\n",
	               fabs(Area2(getCoord(),getCoord(),getCoord())/14)));
}

Determine the Shape

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
int main()
{
	char s[6][32]=
	{
		"Square",
		"Rectangle",
		"Rhombus",
		"Parallelogram",
		"Trapezium",
		"Ordinary Quadrilateral"
	};
	int t,kase=0,ans;
	for(scanf("%d",&t); t--; printf("Case %d: %s\n",++kase,s[ans]))
	{
		ans=5;
		Coord p[4]= {getCoord(),getCoord(),getCoord(),getCoord()};
		sort(p,p+4,cmpCoord);
		do
		{
			Coord &a=p[0],&b=p[1],&c=p[2],&d=p[3];
			if(!sgn(Cross(b-a,d-c))||!sgn(Cross(a-d,c-b)))ans=min(ans,4);
			if(!sgn(Cross(b-a,d-c))&&!sgn(Cross(a-d,c-b)))
			{
				ans=min(ans,sgn(Dot(c-a,b-d))?3:2);
				if(!sgn(Dot(b-a,c-b)))
					ans=min(ans,sgn(Dot(c-a,b-d))?1:0);
			}
		}
		while(next_permutation(p,p+4,cmpCoord));
	}
}

Athletics Track

1
2
3
4
5
6
7
int main()
{
	for(lf a,b,c,kase=0;
	        ~scanf("%lf : %lf",&a,&b);
	        printf("Case %.0f: %.5f %.5f\n",kase+=1,a*c,b*c))
		c=200/(sqrt(a*a+b*b)*atan(b/a)+a);
}

Tunnelling the Earth

1
2
3
4
5
6
7
8
9
10
11
12
int main()
{
	int n;
	Sphere earth(Coord3(0,0,0),6371009);
	for(scanf("%d",&n); n--;)
	{
		lf a,b,c,d;
		scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
		Coord3 A(earth.point(a,b)),B(earth.point(c,d));
		printf("%.0f\n",fabs(Angle(A,B)*earth.r)-abs(A-B));
	}
}

二维几何计算

Morley’s Theorem

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
int main()
{
	int t;
	for(scanf("%d",&t); t--; printf("\n"))
	{
		Coord A=getCoord(),B=getCoord(),C=getCoord(),D;
		for(int i=0; i!=3; ++i)
		{
			lf b=Angle(A-B,C-B),c=Angle(A-C,B-C);
			Line BD(B,Rotate(C-B,b/3)),CD(C,Rotate(B-C,-c/3));
			D=getLineIntersection(BD,CD);
			printf("%.6f %.6f ",D.X,D.Y);
			swap(A,B),swap(B,C);
		}
	}
}

That Nice Euler Circuit

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
struct CoordCmp
{
	bool operator()(Coord A,Coord B)
	{
		return cmpCoord(A,B);
	}
};
int main()
{
    for(int e,kase=0; scanf("%d",&e)&&e; printf("Case %d: There are %d pieces.\n",++kase,--e))//读入时e本身大1个(最后一笔回到起点),因此上面得到的边数要减去一个
    {
        vector<Coord> p;
        set<Coord,CoordCmp> v;
        for(int i=0; i<e; ++i)
        {
            p.push_back(getCoord());
            v.insert(p.back());
            for(int j=1; j<i; ++j)
                if(SegmentProperIntersection(p[i-1],p[i],p[j-1],p[j]))//不包含端点的相交
                    v.insert(getLineIntersection(p[i-1],p[i],p[j-1],p[j]));
        }
        for(set<Coord,CoordCmp>::iterator i=v.begin(); i!=v.end(); ++i)
            for(int j=1; j<p.size(); ++j)
                if(onSegment(*i,p[j-1],p[j]))
                    ++e;
        e+=2-v.size();//欧拉定理:平面图的点数V、边数E和面数F满足F=E+2-V
    }
}

Dog Distance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
int main()
{
	int I,kase=0,a[2];
	lf maxd,mind,t,len[2];
	Coord p[2];
	vector<Coord> q[2];
	for(scanf("%d",&I); I--; printf("Case %d: %.0f\n",++kase,maxd-mind))
	{
		scanf("%d%d",&a[0],&a[1]);
		for(int i=0; i<2; ++i)
		{
			while(a[i]--)q[i].push_back(getCoord());
			for(int j=len[i]=0; j+1<q[i].size(); ++j)
				len[i]+=abs(q[i][j]-q[i][j+1]);
			p[i]=q[i].back(),q[i].pop_back();
		}
		for(maxd=mind=abs(p[0]-p[1]); !q[0].empty()&&!q[1].empty();)
		{
			Coord v[2]= {q[0].back()-p[0],q[1].back()-p[1]};
			t=min(abs(v[0])/len[0],abs(v[1])/len[1]);
			for(int i=0; i<2; ++i)
				if(q[i].back()==(p[i]+=v[i]*=t*len[i]/abs(v[i])))
					q[i].pop_back();
			maxd=max(maxd,abs(p[0]-p[1]));
			mind=min(mind,DistanceToSegment(p[0],p[1]-v[1]+v[0],p[1]));
		}
	}
}

2D Geometry 110 in 1!

EPS 调成 1e-6,再小判定圆和直线相切受影响。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
lf getlf()
{
	lf x;
	return scanf("%lf",&x),x;
}
Coord getCoord()
{
	lf x=getlf(),y=getlf();
	return Coord(x,y);
}
void printf(lf sol)
{
	printf("%.6lf",sol);
}
void printf(Coord sol)
{
	printf("("),printf(sol.X),printf(","),
	       printf(sol.Y),printf(")");
}
void printf(Circle sol)
{
	printf("("),printf(sol.c.X),printf(","),
	       printf(sol.c.Y),printf(","),
	       printf(sol.r),printf(")");
}
template<typename T>
void printf(vector<T> sol)
{
	sort(sol.begin(),sol.end(),cmpCoord);
	printf("[");
	for(int i=0; i!=sol.size(); ++i)
		printf(i?",":""),printf(sol[i]);
	printf("]");
}
int main()
{
	for(char s[128]; ~scanf("%s",s); printf("\n"))
	{
		if(!strcmp(s,"CircumscribedCircle"))
		{
			Coord p[3]= {getCoord(),getCoord(),getCoord()},
			            p0=(p[1]+p[2])/2.0,
			            p2=(p[1]+p[0])/2.0;
			Line l0(p0,Normal(p[2]-p[1])),
			     l2(p2,Normal(p[0]-p[1]));

			Circle sol(getLineIntersection(l0,l2));
			sol.r=abs(sol.c-p[1]);
			printf(sol);
		}
		else if(!strcmp(s,"InscribedCircle"))
		{
			Coord p[3]= {getCoord(),getCoord(),getCoord()};
			lf arg0=(arg(p[1]-p[0])+arg(p[2]-p[0]))/2,
			       arg2=(arg(p[1]-p[2])+arg(p[0]-p[2]))/2;
			Line l0(p[0],polar(1.0,arg0)),
			     l2(p[2],polar(1.0,arg2));

			Circle sol(getLineIntersection(l0,l2));
			sol.r=fabs(DistanceToLine(sol.c,Line(p[0],p[2]-p[0])));
			printf(sol);
		}
		else if(!strcmp(s,"TangentLineThroughPoint"))
		{
			Circle C(getCoord());
			C.r=getlf();
			Coord P=getCoord();
			vector<Coord> ans;
			getTangents(P,C,ans);

			vector<lf> sol;
			for(int i=0; i!=ans.size(); ++i)
			{
				sol.push_back(arg(ans[i]-P)*180/PI);
				if(sol.back()<0)sol.back()+=180;
			}
			printf(sol);
		}
		else if(!strcmp(s,"CircleThroughAPointAndTangentToALineWithRadius"))
		{
			Circle C(getCoord());
			Coord p[2]= {getCoord(),getCoord()};
			C.r=getlf();
			Coord mov=Normal(p[1]-p[0])*C.r;
			Line L0(p[0]+mov,p[1]-p[0]),L1(p[0]-mov,p[1]-p[0]);

			vector<Coord> sol;
			getLineCircleIntersection(L0,C,sol);
			getLineCircleIntersection(L1,C,sol);
			printf(sol);
		}
		else if(!strcmp(s,"CircleTangentToTwoLinesWithRadius"))
		{
			Coord p[4]= {getCoord(),getCoord(),getCoord(),getCoord()};
			lf r=getlf();
			Coord mov=Normal(p[1]-p[0])*r;
			Line L0(p[0]+mov,p[1]-p[0]),L1(p[0]-mov,p[1]-p[0]);
			mov=Normal(p[3]-p[2])*r;
			Line L2(p[2]+mov,p[3]-p[2]),L3(p[2]-mov,p[3]-p[2]);

			vector<Coord> sol;
			sol.push_back(getLineIntersection(L0,L2));
			sol.push_back(getLineIntersection(L0,L3));
			sol.push_back(getLineIntersection(L1,L2));
			sol.push_back(getLineIntersection(L1,L3));
			printf(sol);
		}
		else if(!strcmp(s,"CircleTangentToTwoDisjointCirclesWithRadius"))
		{
			Circle C[2];
			for(int i=0; i!=2; ++i)
				C[i].c=getCoord(),C[i].r=getlf();
			lf r=getlf();
			C[0].r+=r,C[1].r+=r;

			vector<Coord> sol;
			getCircleIntersection(C[0],C[1],sol);
			printf(sol);
		}
	}
}

几何算法

Board Wrapping

凸包模板题。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
int main()
{
	int t,n;
	for(scanf("%d",&t); t--;)
	{
		vector<Coord> p;
		lf x,y,w,h,j,s=0;
		for(scanf("%d",&n); n--; s+=w*h)
		{
			scanf("%lf%lf%lf%lf%lf",&x,&y,&w,&h,&j);
			p.push_back(Coord(x,y)+Rotate(Coord(-w/2,-h/2),-j/180*PI));
			p.push_back(Coord(x,y)+Rotate(Coord(w/2,-h/2),-j/180*PI));
			p.push_back(Coord(x,y)+Rotate(Coord(-w/2,h/2),-j/180*PI));
			p.push_back(Coord(x,y)+Rotate(Coord(w/2,h/2),-j/180*PI));
		}
		printf("%.1f %%\n",s*100/PolygonArea(ConvexHull(p)));
	}
}

Airport

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
int main()
{
	int t,n,kase=0;
	for(scanf("%d",&t); t--;)
	{
		vector<Coord> p;
		for(scanf("%d",&n); n--;)
		{
			lf x,y;
			scanf("%lf%lf",&x,&y);
			p.push_back(Coord(x,y));
		}
		if(p.size()<3)
		{
			printf("Case #%d: 0.000\n",++kase);
			continue;
		}
		vector<Coord> ch(ConvexHull(p));
		lf ans=INF;
		for(int i=0; i<ch.size(); ++i)
		{
			lf sum=0,len=abs(ch[i]-ch[(i+1)%ch.size()]);
			for(int j=0; j<p.size(); ++j)
				sum+=Cross(ch[i]-p[j],ch[(i+1)%ch.size()]-p[j])/len;
			ans=min(ans,sum);
		}
		printf("Case #%d: %.3f\n",++kase,ans/p.size());
	}
}

The Great Divide

判断两凸包是否相交。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
bool ConvexPolygonDisjoint(const vector<Coord> &ch1,const vector<Coord> &ch2)
{
	for(int i=0; i<ch1.size(); ++i)
		if(inPolygon(ch1[i],ch2))
			return 0;
	for(int i=0; i<ch2.size(); ++i)
		if(inPolygon(ch2[i], ch1))
			return 0;
	for(int i=0; i<ch1.size(); ++i)
		for(int j=0; j<ch2.size(); ++j)
			if(SegmentProperIntersection(ch1[i],ch1[(i+1)%ch1.size()],ch2[j],ch2[(j+1)%ch2.size()]))
				return 0;
	return 1;
}
int main()
{
	for(int n[2]; ~scanf("%d%d",&n[0],&n[1])&&n[0]&&n[1];)
	{
		vector<Coord> P[2];
		for(int i=0; i<2; ++i)
			for(int j=0; j<n[i]; ++j)
			{
				lf x,y;
				scanf("%lf%lf",&x,&y);
				P[i].push_back(Coord(x,y));
			}
		printf(ConvexPolygonDisjoint(ConvexHull(P[0]),ConvexHull(P[1]))?"Yes\n":"No\n");
	}
}

Squares

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
int main()
{
	int t,n;
	for(scanf("%d",&t); t--;)
	{
		scanf("%d",&n);
		vector<Coord> p;
		for(int i=0; i<n; ++i)
		{
			lf x,y,w;
			scanf("%lf%lf%lf",&x,&y,&w);
			p.push_back(Coord(x,y));
			p.push_back(Coord(x,y+w));
			p.push_back(Coord(x+w,y));
			p.push_back(Coord(x+w,y+w));
		}
		vector<Coord> ch(ConvexHull(p));
		lf ans;
		if(ch.size()==1)ans=0;
		else if(ch.size()==2)ans=norm(ch[0]-ch[1]);
		else
			for(int u=ans=0,v=1,k; u<ch.size(); ++u)
				for(;; v=(v+1)%ch.size())
					if(k=sgn(Cross(ch[(u+1)%ch.size()]-ch[u],ch[(v+1)%ch.size()]-ch[v])),k<=0)
					{
						ans=max(ans,norm(ch[u]-ch[v]));
						if(k==0)ans=max(ans,norm(ch[u]-ch[(v+1)%ch.size()]));
						break;
					}
		printf("%.0f\n",ans);
	}
}

Most Distant Point from the Sea

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
int main()
{
	for(int n; ~scanf("%d", &n)&&n;)
	{
		lf l,r;
		vector<Coord> p;
		for(int i=0; i<n; ++i)
		{
			scanf("%lf%lf",&l,&r);
			p.push_back(Coord(l,r));
		}
		for(l=0,r=INF; r-l>EPS;)
		{
			lf m=(l+r)/2;
			vector<Line> L;
			for(int i=0; i<n; ++i)
			{
				L.push_back(Line(p[i],p[(i+1)%n]-p[i]));
				L.back().p+=m*Normal(L.back().v);
			}
			if(getHalfPlaneIntersection(L).empty())r=m;
			else l=m;
		}
		printf("%.6f\n",l);
	}
}
Loading comments...