post on 26 Jan 2019 about 10997words require 37min
CC BY 4.0 (除特别声明或转载文章外)
如果这篇博客帮助到你,可以请我喝一杯咖啡~
vector 自带大小比较为字典序比较, !=
、 ==
运算,其余需要时一定记得重载!
减法,当被减数小于减数时减为 0。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
struct Wint : vector<int> //继承vector
{
static const int width = 9, base = 1e9;
Wint(unsigned long long n = 0) //普通初始化,当整型数和Wint同时运算时会提升至Wint
{
for (; n; n /= base)
push_back(n % base);
}
explicit Wint(const string &s) //字符串初始化函数,未判断字符串合法情况
{
for (int len = int(s.size() - 1) / width + 1, b, e, i = 0; i < len; ++i)
for (e = s.size() - i * width, b = max(0, e - width), push_back(0); b != e; ++b)
back() = back() * 10 + s[b] - '0';
trim(0);
}
Wint &trim(bool up = 1) //去前导0,是否需要进位,很常用的小函数,为方便返回自身
{
for (int i = 1; up && i < size(); ++i)
{
if ((*this)[i - 1] < 0)
--(*this)[i], (*this)[i - 1] += base;
if ((*this)[i - 1] >= base)
(*this)[i] += (*this)[i - 1] / base, (*this)[i - 1] %= base;
}
while (!empty() && back() <= 0)
pop_back();
for (; up && !empty() && back() >= base; (*this)[size() - 2] %= base)
push_back(back() / base);
return *this;
}
friend istream &operator>>(istream &is, Wint &n)
{
string s; //懒
return is >> s, n = Wint(s), is;
}
friend ostream &operator<<(ostream &os, const Wint &n)
{
if (n.empty())
return os.put('0');
os << n.back();
char ch = os.fill('0');
for (int i = n.size() - 2; ~i; --i)
os.width(n.width), os << n[i];
return os.fill(ch), os;
}
friend bool operator<(const Wint &a, const Wint &b)
{
if (a.size() != b.size())
return a.size() < b.size();
for (int i = a.size() - 1; ~i; --i)
if (a[i] != b[i])
return a[i] < b[i];
return 0;
}
friend bool operator>(const Wint &a, const Wint &b) { return b < a; }
friend bool operator<=(const Wint &a, const Wint &b) { return !(a > b); }
friend bool operator>=(const Wint &a, const Wint &b) { return !(a < b); }
Wint &operator+=(const Wint &b)
{
if (size() < b.size())
resize(b.size()); //保证有足够的位数
for (int i = 0; i < b.size(); ++i)
(*this)[i] += b[i];
return trim(); //单独进位防自运算
}
friend Wint operator+(Wint a, const Wint &b) { return a += b; }
Wint &operator++() { return *this += 1; } //前置版本,懒
Wint operator++(int) //后置版本
{
Wint b(*this);
return ++*this, b;
}
Wint &operator-=(const Wint &b) //a<b会使a变为0
{
if (size() < b.size())
resize(b.size()); //保证有足够的位数
for (int i = 0; i < b.size(); ++i)
(*this)[i] -= b[i];
return trim(); //单独进位防自运算
}
friend Wint operator-(Wint a, const Wint &b) { return a -= b; }
Wint &operator--() { return *this -= 1; } //前置版本,懒
Wint operator--(int) //后置版本
{
Wint b(*this);
return --*this, b;
}
Wint &operator*=(const Wint &b) //高精度乘法,常规写法
{
Wint c;
c.assign(size() + b.size(), 0);
for (int j = 0, k, l; j < b.size(); ++j)
if (b[j]) //稀疏优化,特殊情况很有效
for (int i = 0; i < size(); ++i)
{
unsigned long long n = (*this)[i];
for (n *= b[j], k = i + j; n; n /= base)
c[k++] += n % base;
for (l = i + j; c[l] >= base || l + 1 < k; c[l++] %= base)
c[l + 1] += c[l] / base;
}
return swap(c), trim(0);
}
/*
Wint &operator*=(const Wint &b) //一种效率略高但对位宽有限制的写法
{
vector<unsigned long long> n(size() + b.size(), 0); //防爆int
//乘法算完后统一进位效率高,防止乘法溢出(unsigned long long范围0~1.8e19)
//位宽为9时size()不能超过18(十进制162位),位宽为8时size()不能超过1800(十进制14400位)等等。
for (int j = 0; j != b.size(); ++j)
if (b[j]) //稀疏优化,特殊情况很有效
for (int i = 0; i != size(); ++i)
n[i + j] += (unsigned long long)(*this)[i] * b[j];
for (int i = 1; i < n.size(); ++i) //这里用<防止位数0,单独进位防自运算
n[i] += n[i - 1] / base, n[i - 1] %= base;
return assign(n.begin(), n.end()), trim(0);
}
Wint &operator*=(const Wint &b) //fft优化乘法,注意double仅15位有效数字,调小Wint::width不超过2,计算自2*log2(base)+2*log2(len)<53
{
vector<ll> ax(begin(), end()), bx(b.begin(), b.end());
ax = FFT(size() + b.size()).ask(ax, bx);
for (int i = 1; i < ax.size(); ++i)
ax[i] += ax[i - 1] / base, ax[i - 1] %= base;
return assign(ax.begin(), ax.end()), trim(0);
}
Wint &operator*=(const Wint &b) //ntt优化,Wint::width不超过2
{
vector<ll> ax(begin(), end()), bx(b.begin(), b.end());
ax = FNTT(size() + b.size(), (7 << 26) + 1, 3).ask(ax, bx);
for (int i = 1; i < ax.size(); ++i)
ax[i] += ax[i - 1] / base, ax[i - 1] %= base;
return assign(ax.begin(), ax.end()), trim(0);
}
*/
friend Wint operator*(Wint a, const Wint &b) { return a *= b; }
Wint &operator/=(Wint b)
{
Wint r, c, d = b.base / (b.back() + 1);
*this *= d, b *= d, c.assign(size(), 0);
for (int i = size() - 1; ~i; --i)
{
r.insert(r.begin(), (*this)[i]);
unsigned long long s = 0;
for (int j = b.size(); j + 1 >= b.size(); --j) //b.size()==0肯定第一行就出问题的
s = s * b.base + (j < r.size() ? r[j] : 0);
for (d = c[i] = s / b.back(), d *= b; r < d; r += b)
--c[i];
r -= d;
}
return swap(c), trim(0); //r为加倍后的余数,可通过高精度除低精度得到真正余数,此处略
}
friend Wint operator/(Wint a, const Wint &b) { return a /= b; }
Wint &operator%=(const Wint &b) { return *this -= *this / b * b; }
friend Wint operator%(Wint a, const Wint &b) { return a %= b; }
//开平方,改自ZJU模板
bool cmp(long long c, int d, const Wint &b) const
{
if ((int)b.size() - (int)size() < d + 1 && c)
return 1;
long long t = 0;
for (int i = b.size() - 1, lo = -(base << 1); lo <= t && t <= 0 && ~i; --i)
if (t = t * base - b[i], 0 <= i - d - 1 && i - d - 1 < size())
t += (*this)[i - d - 1] * c;
return t > 0;
}
Wint &sub(const Wint &b, long long k, int d)
{
int l = b.size() + d;
for (int i = d + 1; i <= l; ++i)
{
long long tmp = (*this)[i] - k * b[i - d - 1];
if (tmp < 0)
{
(*this)[i + 1] += (tmp - base + 1) / base;
(*this)[i] = tmp - (tmp - base + 1) / base * base;
}
else
(*this)[i] = tmp;
}
for (int i = l + 1; i < size() && (*this)[i] < 0; ++i)
{
(*this)[i + 1] += ((*this)[i] - base + 1) / base;
(*this)[i] -= ((*this)[i] - base + 1) / base * base;
}
return trim(0);
}
friend Wint sqrt(Wint a)
{
Wint n;
n.assign(a.size() + 1 >> 1, 0);
for (int i = n.size() - 1, l, r; ~i; --i)
{
for (l = 0, r = a.base, n[i] = l + r >> 1; r - l > 1; n[i] = l + r >> 1)
{
if (n.cmp(n[i], i - 1, a))
r = n[i];
else
l = n[i];
}
a.sub(n, n[i], i - 1), n[i] += l + r >> 1;
}
for (int i = 0; i < n.size(); ++i)
n[i] >>= 1;
return n.trim(0);
}
/*
friend Wint sqrt(const Wint &a) //常规牛顿迭代实现的开平方算法,慢但是好敲
{
Wint b = a, c = (b + 1) / 2;
while (b != c)
swap(b, c), c = (b + a / b) / 2;
return c;
}
friend Wint sqrt(const Wint &a)
{
Wint ret, t;
ret.assign((a.size() + 1) >> 1, 0);
for (int i = ret.size() - 1, l, r; ~i; --i)
{
for (l = 0, r = a.base; r - l > 1;)
{
ret[i] = l + (r - l) / 2;
t = ret * ret;
if (a < t)
r = ret[i];
else
l = ret[i];
}
if (!l && i == ret.size() - 1)
ret.pop_back();
else
ret[i] = l;
}
return ret;
}
*/
};
使用示范。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
struct Fraction
{
ll num, den;
Fraction(ll n = 0, ll d = 1) : num(n), den(d)
{
d = __gcd(num, den), num /= d, den /= d;
if (den < 0)
num = -num, den = -den;
}
friend Fraction operator+(const Fraction &A, const Fraction &B)
{
ll d = __gcd(A.den, B.den);
return Fraction(B.den / d * A.num + A.den / d * B.num, A.den / d * B.den);
}
Fraction &operator+=(const Fraction &c) { return *this = *this + c; }
Fraction operator-() const
{
Fraction r(*this);
return r.num = -r.num, r;
}
friend Fraction operator-(const Fraction &a, const Fraction &c) { return -c + a; }
Fraction &operator-=(const Fraction &c) { return *this = *this - c; }
friend Fraction operator*(const Fraction &A, const Fraction &B) { return Fraction(A.num * B.num, A.den * B.den); }
Fraction &operator*=(const Fraction &c) { return *this = *this * c; }
friend Fraction operator/(const Fraction &A, const Fraction &B) { return Fraction(A.num * B.den, A.den * B.num); }
Fraction &operator/=(const Fraction &c) { return *this = *this / c; }
friend Fraction operator%(const Fraction &a, const Fraction &c) { return Fraction(a.num * c.den % (c.num * a.den), a.den * c.den); }
Fraction &operator%=(const Fraction &c) { return *this = *this % c; }
friend bool operator==(const Fraction &a, const Fraction &b) { return a.num * b.den == a.den * b.num; }
friend bool operator!=(const Fraction &a, const Fraction &b) { return !(a == b); }
friend bool operator<(const Fraction &a, const Fraction &b) { return a.num * b.den < a.den * b.num; }
friend bool operator>(const Fraction &a, const Fraction &b) { return b < a; }
friend bool operator<=(const Fraction &a, const Fraction &b) { return !(a > b); }
friend bool operator>=(const Fraction &a, const Fraction &b) { return !(a < b); }
friend Fraction abs(Fraction f)
{
if (f.num < 0)
f.num = -f.num;
return f;
}
friend ostream &operator<<(ostream &os, const Fraction &f) { return !f.num ? os << 0 : f.den == 1 ? os << f.num : os << f.num << '/' << f.den; }
};
代替整型进行位运算,更方便并且可以处理超过最大整形范围大小的位集合。 你可以把 bitset 看作可以位运算的 bool 数组,换言之,bitset 的大小是固定的。因此,用 bitset 做状态压缩是很方便的,也可以方便的实现集合的交并补操作。 bitset 仅重载了相等不等和位运算符,原生不支持四则运算和大小比较,所以很少代替高精度数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
typedef bitset<127> Bint;
/*
Bint b(unsigned long long u=0);//用u的低N位初始化b,N是一个可转成ULL类型的常量表达式,高位补0
Bint bs(string s,int pos,int m=string::npos,char zero='0',char one='1');//用s从pos位开始的m位初始化b,s中只含zero和one
b.size();//b的大小,即N
b.count();//b中1的个数
b[pos];//b中pos位的引用
b.set();//b全赋1
b.reset();//b全赋0
b.flip();//b全反转
b.to_ull();//b转成unsigned long long,b.size()>64时出错
b.to_string(char zero='0',char one='1');//按参数输出字符串
os<<b;//按'0'和'1'打印b
is>>b;//按'0'和'1'读入b,当下一个字符不是'0'或'1'或读到b.size()个数后停止
==、!=、<<、>>、&、|、^//保持它们在整型运算中的含义
*/
//大小比较,其他运算符类似
bool operator<(const Bint &a, const Bint &b)
{
for (int i = a.size() - 1; ~i; --i)
if (a[i] != b[i])
return a[i] < b[i];
return 0;
}
bool operator!=(const Bint &a, const Bint &b)
{
for (int i = a.size() - 1; ~i; --i)
if (a[i] != b[i])
return 1;
return 0;
}
//加法
Bint operator+(const Bint &a, const Bint &b) { return b.any() ? (a ^ b) + ((a & b) << 1) : a; }
Bint &operator+=(Bint &a, const Bint &b) { return a = a + b; }
//减法
Bint operator-(const Bint &a) { return Bint(1) + ~a; }
Bint &operator-=(Bint &a, const Bint &b) { return a += -b; }
Bint operator-(Bint a, const Bint &b) { return a -= b; }
//乘法
Bint operator*(Bint a, Bint b)
{
Bint r(0);
for (; b.any(); b >>= 1, a += a)
if (b[0])
r += a;
return r;
}
Bint &operator*=(Bint &a, const Bint &b) { return a = a * b; }
//整除,取模
Bint operator%=(Bint ÷nd, const Bint &divisor)
{
if (dividend < divisor || divisor.none())
return dividend;
Bint c, res = 0;
for (int k; divisor < dividend;)
{
for (k = 0, c = divisor; !(dividend < c); c <<= 1, ++k)
if (dividend < divisor + c)
{
res += 1 << k;
break;
}
if (dividend < divisor + c)
break;
res += 1 << (k - 1);
dividend -= c >> 1;
}
return dividend; //res是商
}
//输入输出,bitset已经原生重载了输入输出运算符,避免歧义。
istream &getb(istream &is, Bint &val)
{
int sign = 1, ch = is.get();
for (; !isdigit(ch) && ch != EOF; ch = is.get())
if (ch == '-')
sign = -sign;
for (val = 0; isdigit(ch); ch = is.get())
val = (val << 3) + (val << 1) + (ch ^ '0');
if (sign == -1)
val = -val;
return is.putback(ch);
}
ostream &putb(ostream &os, const Bint &val)
{
if (Bint(9) < val)
putb(os, val / 10);
return os.put(val.to_ulong() % 10 + '0');
}
Related posts