高精度

无符号整数

使用范例

vector 自带大小比较为字典序比较, !=== 运算,其余需要时一定记得重载!

减法,当被减数小于减数时减为 0。

struct Wint : vector<int> //继承vector
{
	static const int width = 9, base = 1e9;
	Wint(unsigned long long n = 0) //普通初始化,当整型数和Wint同时运算时会提升至Wint
	{
		for (; n; n /= base)
			push_back(n % base);
	}
	explicit Wint(const string &s) //字符串初始化函数,未判断字符串合法情况
	{
		for (int len = int(s.size() - 1) / width + 1, b, e, i = 0; i < len; ++i)
			for (e = s.size() - i * width, b = max(0, e - width), push_back(0); b != e; ++b)
				back() = back() * 10 + s[b] - '0';
		trim(0);
	}
	Wint &trim(bool up = 1) //去前导0,是否需要进位,很常用的小函数,为方便返回自身
	{
		for (int i = 1; up && i < size(); ++i)
		{
			if ((*this)[i - 1] < 0)
				--(*this)[i], (*this)[i - 1] += base;
			if ((*this)[i - 1] >= base)
				(*this)[i] += (*this)[i - 1] / base, (*this)[i - 1] %= base;
		}
		while (!empty() && back() <= 0)
			pop_back();
		for (; up && !empty() && back() >= base; (*this)[size() - 2] %= base)
			push_back(back() / base);
		return *this;
	}
	friend istream &operator>>(istream &is, Wint &n)
	{
		string s; //懒
		return is >> s, n = Wint(s), is;
	}
	friend ostream &operator<<(ostream &os, const Wint &n)
	{
		if (n.empty())
			return os.put('0');
		os << n.back();
		char ch = os.fill('0');
		for (int i = n.size() - 2; ~i; --i)
			os.width(n.width), os << n[i];
		return os.fill(ch), os;
	}
	friend bool operator<(const Wint &a, const Wint &b)
	{
		if (a.size() != b.size())
			return a.size() < b.size();
		for (int i = a.size() - 1; ~i; --i)
			if (a[i] != b[i])
				return a[i] < b[i];
		return 0;
	}
	friend bool operator>(const Wint &a, const Wint &b) { return b < a; }
	friend bool operator<=(const Wint &a, const Wint &b) { return !(a > b); }
	friend bool operator>=(const Wint &a, const Wint &b) { return !(a < b); }
	Wint &operator+=(const Wint &b)
	{
		if (size() < b.size())
			resize(b.size()); //保证有足够的位数
		for (int i = 0; i < b.size(); ++i)
			(*this)[i] += b[i];
		return trim(); //单独进位防自运算
	}
	friend Wint operator+(Wint a, const Wint &b) { return a += b; }
	Wint &operator++() { return *this += 1; } //前置版本,懒
	Wint operator++(int)					  //后置版本
	{
		Wint b(*this);
		return ++*this, b;
	}
	Wint &operator-=(const Wint &b) //a<b会使a变为0
	{
		if (size() < b.size())
			resize(b.size()); //保证有足够的位数
		for (int i = 0; i < b.size(); ++i)
			(*this)[i] -= b[i];
		return trim(); //单独进位防自运算
	}
	friend Wint operator-(Wint a, const Wint &b) { return a -= b; }
	Wint &operator--() { return *this -= 1; } //前置版本,懒
	Wint operator--(int)					  //后置版本
	{
		Wint b(*this);
		return --*this, b;
	}
	Wint &operator*=(const Wint &b) //高精度乘法,常规写法
	{
		Wint c;
		c.assign(size() + b.size(), 0);
		for (int j = 0, k, l; j < b.size(); ++j)
			if (b[j]) //稀疏优化,特殊情况很有效
				for (int i = 0; i < size(); ++i)
				{
					unsigned long long n = (*this)[i];
					for (n *= b[j], k = i + j; n; n /= base)
						c[k++] += n % base;
					for (l = i + j; c[l] >= base || l + 1 < k; c[l++] %= base)
						c[l + 1] += c[l] / base;
				}
		return swap(c), trim(0);
	}
	/*
	Wint &operator*=(const Wint &b) //一种效率略高但对位宽有限制的写法
	{
		vector<unsigned long long> n(size() + b.size(), 0); //防爆int
		//乘法算完后统一进位效率高,防止乘法溢出(unsigned long long范围0~1.8e19)
		//位宽为9时size()不能超过18(十进制162位),位宽为8时size()不能超过1800(十进制14400位)等等。
		for (int j = 0; j != b.size(); ++j)
			if (b[j]) //稀疏优化,特殊情况很有效
				for (int i = 0; i != size(); ++i)
					n[i + j] += (unsigned long long)(*this)[i] * b[j];
		for (int i = 1; i < n.size(); ++i) //这里用<防止位数0,单独进位防自运算
			n[i] += n[i - 1] / base, n[i - 1] %= base;
		return assign(n.begin(), n.end()), trim(0);
	}
	Wint &operator*=(const Wint &b) //fft优化乘法,注意double仅15位有效数字,调小Wint::width不超过2,计算自2*log2(base)+2*log2(len)<53
	{
		vector<ll> ax(begin(), end()), bx(b.begin(), b.end());
		ax = FFT(size() + b.size()).ask(ax, bx);
		for (int i = 1; i < ax.size(); ++i)
			ax[i] += ax[i - 1] / base, ax[i - 1] %= base;
		return assign(ax.begin(), ax.end()), trim(0);
	}
	Wint &operator*=(const Wint &b) //ntt优化,Wint::width不超过2
	{
		vector<ll> ax(begin(), end()), bx(b.begin(), b.end());
		ax = FNTT(size() + b.size(), (7 << 26) + 1, 3).ask(ax, bx);
		for (int i = 1; i < ax.size(); ++i)
			ax[i] += ax[i - 1] / base, ax[i - 1] %= base;
		return assign(ax.begin(), ax.end()), trim(0);
	}
	*/
	friend Wint operator*(Wint a, const Wint &b) { return a *= b; }
	Wint &operator/=(Wint b)
	{
		Wint r, c, d = b.base / (b.back() + 1);
		*this *= d, b *= d, c.assign(size(), 0);
		for (int i = size() - 1; ~i; --i)
		{
			r.insert(r.begin(), (*this)[i]);
			unsigned long long s = 0;
			for (int j = b.size(); j + 1 >= b.size(); --j) //b.size()==0肯定第一行就出问题的
				s = s * b.base + (j < r.size() ? r[j] : 0);
			for (d = c[i] = s / b.back(), d *= b; r < d; r += b)
				--c[i];
			r -= d;
		}
		return swap(c), trim(0); //r为加倍后的余数,可通过高精度除低精度得到真正余数,此处略
	}
	friend Wint operator/(Wint a, const Wint &b) { return a /= b; }
	Wint &operator%=(const Wint &b) { return *this -= *this / b * b; }
	friend Wint operator%(Wint a, const Wint &b) { return a %= b; }
	//开平方,改自ZJU模板
	bool cmp(long long c, int d, const Wint &b) const
	{
		if ((int)b.size() - (int)size() < d + 1 && c)
			return 1;
		long long t = 0;
		for (int i = b.size() - 1, lo = -(base << 1); lo <= t && t <= 0 && ~i; --i)
			if (t = t * base - b[i], 0 <= i - d - 1 && i - d - 1 < size())
				t += (*this)[i - d - 1] * c;
		return t > 0;
	}
	Wint &sub(const Wint &b, long long k, int d)
	{
		int l = b.size() + d;
		for (int i = d + 1; i <= l; ++i)
		{
			long long tmp = (*this)[i] - k * b[i - d - 1];
			if (tmp < 0)
			{
				(*this)[i + 1] += (tmp - base + 1) / base;
				(*this)[i] = tmp - (tmp - base + 1) / base * base;
			}
			else
				(*this)[i] = tmp;
		}
		for (int i = l + 1; i < size() && (*this)[i] < 0; ++i)
		{
			(*this)[i + 1] += ((*this)[i] - base + 1) / base;
			(*this)[i] -= ((*this)[i] - base + 1) / base * base;
		}
		return trim(0);
	}
	friend Wint sqrt(Wint a)
	{
		Wint n;
		n.assign(a.size() + 1 >> 1, 0);
		for (int i = n.size() - 1, l, r; ~i; --i)
		{
			for (l = 0, r = a.base, n[i] = l + r >> 1; r - l > 1; n[i] = l + r >> 1)
			{
				if (n.cmp(n[i], i - 1, a))
					r = n[i];
				else
					l = n[i];
			}
			a.sub(n, n[i], i - 1), n[i] += l + r >> 1;
		}
		for (int i = 0; i < n.size(); ++i)
			n[i] >>= 1;
		return n.trim(0);
	}
	/*
	friend Wint sqrt(const Wint &a) //常规牛顿迭代实现的开平方算法,慢但是好敲
	{
		Wint b = a, c = (b + 1) / 2;
		while (b != c)
			swap(b, c), c = (b + a / b) / 2;
		return c;
	}
	friend Wint sqrt(const Wint &a)
	{
		Wint ret, t;
		ret.assign((a.size() + 1) >> 1, 0);
		for (int i = ret.size() - 1, l, r; ~i; --i)
		{
			for (l = 0, r = a.base; r - l > 1;)
			{
				ret[i] = l + (r - l) / 2;
				t = ret * ret;
				if (a < t)
					r = ret[i];
				else
					l = ret[i];
			}
			if (!l && i == ret.size() - 1)
				ret.pop_back();
			else
				ret[i] = l;
		}
		return ret;
	}
	*/
};

分数

使用示范

struct Fraction
{
	ll num, den;
	Fraction(ll n = 0, ll d = 1) : num(n), den(d)
	{
		d = __gcd(num, den), num /= d, den /= d;
		if (den < 0)
			num = -num, den = -den;
	}
	friend Fraction operator+(const Fraction &A, const Fraction &B)
	{
		ll d = __gcd(A.den, B.den);
		return Fraction(B.den / d * A.num + A.den / d * B.num, A.den / d * B.den);
	}
	Fraction &operator+=(const Fraction &c) { return *this = *this + c; }
	Fraction operator-() const
	{
		Fraction r(*this);
		return r.num = -r.num, r;
	}
	friend Fraction operator-(const Fraction &a, const Fraction &c) { return -c + a; }
	Fraction &operator-=(const Fraction &c) { return *this = *this - c; }
	friend Fraction operator*(const Fraction &A, const Fraction &B) { return Fraction(A.num * B.num, A.den * B.den); }
	Fraction &operator*=(const Fraction &c) { return *this = *this * c; }
	friend Fraction operator/(const Fraction &A, const Fraction &B) { return Fraction(A.num * B.den, A.den * B.num); }
	Fraction &operator/=(const Fraction &c) { return *this = *this / c; }
	friend Fraction operator%(const Fraction &a, const Fraction &c) { return Fraction(a.num * c.den % (c.num * a.den), a.den * c.den); }
	Fraction &operator%=(const Fraction &c) { return *this = *this % c; }
	friend bool operator==(const Fraction &a, const Fraction &b) { return a.num * b.den == a.den * b.num; }
	friend bool operator!=(const Fraction &a, const Fraction &b) { return !(a == b); }
	friend bool operator<(const Fraction &a, const Fraction &b) { return a.num * b.den < a.den * b.num; }
	friend bool operator>(const Fraction &a, const Fraction &b) { return b < a; }
	friend bool operator<=(const Fraction &a, const Fraction &b) { return !(a > b); }
	friend bool operator>=(const Fraction &a, const Fraction &b) { return !(a < b); }
	friend Fraction abs(Fraction f)
	{
		if (f.num < 0)
			f.num = -f.num;
		return f;
	}
	friend ostream &operator<<(ostream &os, const Fraction &f) { return !f.num ? os << 0 : f.den == 1 ? os << f.num : os << f.num << '/' << f.den; }
};

bitset 高精度

代替整型进行位运算,更方便并且可以处理超过最大整形范围大小的位集合。 你可以把 bitset 看作可以位运算的 bool 数组,换言之,bitset 的大小是固定的。因此,用 bitset 做状态压缩是很方便的,也可以方便的实现集合的交并补操作。 bitset 仅重载了相等不等和位运算符,原生不支持四则运算和大小比较,所以很少代替高精度数。

typedef bitset<127> Bint;
/*
Bint b(unsigned long long u=0);//用u的低N位初始化b,N是一个可转成ULL类型的常量表达式,高位补0
Bint bs(string s,int pos,int m=string::npos,char zero='0',char one='1');//用s从pos位开始的m位初始化b,s中只含zero和one

b.size();//b的大小,即N
b.count();//b中1的个数

b[pos];//b中pos位的引用

b.set();//b全赋1
b.reset();//b全赋0
b.flip();//b全反转

b.to_ull();//b转成unsigned long long,b.size()>64时出错
b.to_string(char zero='0',char one='1');//按参数输出字符串

os<<b;//按'0'和'1'打印b
is>>b;//按'0'和'1'读入b,当下一个字符不是'0'或'1'或读到b.size()个数后停止

==、!=、<<、>>、&、|、^//保持它们在整型运算中的含义
*/
//大小比较,其他运算符类似
bool operator<(const Bint &a, const Bint &b)
{
	for (int i = a.size() - 1; ~i; --i)
		if (a[i] != b[i])
			return a[i] < b[i];
	return 0;
}
bool operator!=(const Bint &a, const Bint &b)
{
	for (int i = a.size() - 1; ~i; --i)
		if (a[i] != b[i])
			return 1;
	return 0;
}
//加法
Bint operator+(const Bint &a, const Bint &b) { return b.any() ? (a ^ b) + ((a & b) << 1) : a; }
Bint &operator+=(Bint &a, const Bint &b) { return a = a + b; }
//减法
Bint operator-(const Bint &a) { return Bint(1) + ~a; }
Bint &operator-=(Bint &a, const Bint &b) { return a += -b; }
Bint operator-(Bint a, const Bint &b) { return a -= b; }
//乘法
Bint operator*(Bint a, Bint b)
{
	Bint r(0);
	for (; b.any(); b >>= 1, a += a)
		if (b[0])
			r += a;
	return r;
}
Bint &operator*=(Bint &a, const Bint &b) { return a = a * b; }
//整除,取模
Bint operator%=(Bint &dividend, const Bint &divisor)
{
	if (dividend < divisor || divisor.none())
		return dividend;
	Bint c, res = 0;
	for (int k; divisor < dividend;)
	{
		for (k = 0, c = divisor; !(dividend < c); c <<= 1, ++k)
			if (dividend < divisor + c)
			{
				res += 1 << k;
				break;
			}
		if (dividend < divisor + c)
			break;
		res += 1 << (k - 1);
		dividend -= c >> 1;
	}
	return dividend; //res是商
}
//输入输出,bitset已经原生重载了输入输出运算符,避免歧义。
istream &getb(istream &is, Bint &val)
{
	int sign = 1, ch = is.get();
	for (; !isdigit(ch) && ch != EOF; ch = is.get())
		if (ch == '-')
			sign = -sign;
	for (val = 0; isdigit(ch); ch = is.get())
		val = (val << 3) + (val << 1) + (ch ^ '0');
	if (sign == -1)
		val = -val;
	return is.putback(ch);
}
ostream &putb(ostream &os, const Bint &val)
{
	if (Bint(9) < val)
		putb(os, val / 10);
	return os.put(val.to_ulong() % 10 + '0');
}