Menu

Bubble Cup 11 - Finals

post on 16 Feb 2019 about 5901words require 20min
CC BY 4.0 (除特别声明或转载文章外)
如果这篇博客帮助到你,可以请我喝一杯咖啡~

题不错,以后补…

Space Isaac

如果一个数不能被表示那么它减去 $a_i$ 仍然在 $a$ 中。

假设这个数是 $a_0+a_i$​ ,不难发现需要满足 $a_0 + a_i = a_1 + a_{i-1} = a_2 + a_{i-2}\dots$ 。差分之后相当于判两部分是不是回文。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <bits/stdc++.h>
using namespace std;
struct Manacher : vector<int>
{
	Manacher(vector<int> a) : vector<int>((a.size() << 1) - 1, 0)
	{
		vector<int> b(size(), -1);
		for (int i = 0; i < a.size(); ++i)
			b[i << 1] = a[i];
		for (int i = 1, x = 0; i < size(); ++i)
		{
			if (i <= x + at(x))
				at(i) = min(at((x << 1) - i), x + at(x) - i);
			while (i - at(i) - 1 >= 0 && i + at(i) + 1 < size() && b[i - at(i) - 1] == b[i + at(i) + 1])
				++at(i);
			if (i + at(i) >= x + at(x))
				x = i;
		}
		for (int i = 0; i < size(); ++i)
			if (i - at(i) == 0 || i + at(i) == size() - 1)
				++at(i);
		for (int i = 0; i < size(); ++i)
			at(i) >>= 1;
	}
	bool isPalindrome(int l, int r) { return l == r || at(l + r - 1) >= r - l >> 1; }
};
int main()
{
	int n, m;
	scanf("%d %d", &n, &m);
	vector<int> a(n), b(n), ans;
	for (int i = 0; i < n; ++i)
		scanf("%d", &a[i]);
	for (int i = 0; i < n - 1; ++i)
		b[i] = a[i + 1] - a[i];
	b[n - 1] = (a[0] + m - a[n - 1]) % m;
	Manacher p(b);
	for (int i = 0; i < n; ++i)
		if (p.isPalindrome(0, i) && p.isPalindrome(i, n))
			ans.push_back((a[0] + a[i]) % m);
	sort(ans.begin(), ans.end());
	printf("%d\n", ans.size());
	for (auto i : ans)
		printf("%d ", i);
}

Interstellar battle

1

AI robots

将输入按照 r 从大到小排序,这样对于排序后的每个机器人,只要它能看到前面的机器,前面的机器一定也可以看到他。

对每个 q 建立一棵线段树,需要动态建点以节省空间。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 7, NPOS = -1;
struct Node
{
	int x, r, q;
	bool operator<(const Node &rhs) const { return r > rhs.r; }
} v[N];
struct SegmentTree
{
	struct Val
	{
		int l, r;
		ll sum;
		void upd(ll add) { sum += add; }
	};
	struct Node
	{
		Val v;
		int lc, rc;
	};
	vector<Node> v;
	SegmentTree(int l = 0, int r = 1e9 + 7) { build(l, r); }
	void build(int l, int r) { v.push_back({{l, r, 0}, NPOS, NPOS}); }
	Val up(const Val &lc, const Val &rc) { return {lc.l, rc.r, lc.sum + rc.sum}; }
	void add(int pos, ll val, int rt = 0)
	{
		v[rt].v.upd(val);
		if (pos <= v[rt].v.l && v[rt].v.r <= pos)
			return;
		int m = v[rt].v.l + v[rt].v.r >> 1;
		if (m >= pos)
		{
			if (v[rt].lc == NPOS)
				v[rt].lc = v.size(), build(v[rt].v.l, m);
			add(pos, val, v[rt].lc);
		}
		else
		{
			if (v[rt].rc == NPOS)
				v[rt].rc = v.size(), build(m + 1, v[rt].v.r);
			add(pos, val, v[rt].rc);
		}
	}
	Val ask(int l, int r, int rt = 0)
	{
		if (rt == NPOS)
			return {l, r, 0};
		if (l <= v[rt].v.l && v[rt].v.r <= r)
			return v[rt].v;
		int m = v[rt].v.l + v[rt].v.r >> 1;
		if (m >= r)
			return ask(l, r, v[rt].lc);
		if (m < l)
			return ask(l, r, v[rt].rc);
		return up(ask(l, m, v[rt].lc), ask(m + 1, r, v[rt].rc));
	}
};
unordered_map<int, SegmentTree> mp;
int n, k;
int main()
{
	scanf("%d%d", &n, &k);
	for (int i = 0; i < n; ++i)
		scanf("%d%d%d", &v[i].x, &v[i].r, &v[i].q);
	ll ans = 0;
	sort(v, v + n);
	for (int i = 0; i < n; ++i)
	{
		for (int j = v[i].q - k; j <= v[i].q + k; ++j)
			if (mp.count(j))
				ans += mp[j].ask(max(v[i].x - v[i].r, 0), min(v[i].x + v[i].r, int(1e9))).sum;
		mp[v[i].q].add(v[i].x, 1);
	}
	printf("%lld", ans);
}

一开始的奇思妙想

把 Fenwick 建在 map 上,这样离散化也省了。可惜还是 MLE 了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 7;
struct Node
{
	int x, r, q;
	bool operator<(const Node &rhs) const { return r > rhs.r; }
} v[N];
struct Fenwick
{
	map<int, ll> v;
	void add(int x, ll val, int M = 1e9 + 7)
	{
		for (; x < M; x += x & -x)
			v[x] += val;
	}
	ll ask(int x)
	{
		ll r = 0;
		for (; x; x -= x & -x)
			r += v[x];
		return r;
	}
	ll ask(int l, int r)
	{
		return ask(r) - ask(l - 1);
	}
};
unordered_map<ll, Fenwick> mp;
int n, k;
int main()
{
	scanf("%d%d", &n, &k);
	for (int i = 0; i < n; ++i)
		scanf("%d%d%d", &v[i].x, &v[i].r, &v[i].q);
	sort(v, v + n);
	ll ans = 0;
	for (int i = 0; i < n; ++i)
	{
		for (int j = v[i].q - k; j <= v[i].q + k; ++j)
			if (mp.count(j))
				ans += mp[j].ask(max(v[i].x - v[i].r, 0) + 1, min(v[i].x + v[i].r, int(1e9)) + 1);
		mp[v[i].q].add(v[i].x + 1, 1);
	}
	printf("%lld", ans);
}

Self-exploration

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 7;
struct Mod
{
	const ll M;
	Mod(ll M) : M(M) {}
	ll mul(ll a, ll b) const { return a * b % M; }
};
struct Factorial : Mod
{
	vector<ll> fac, ifac;
	Factorial(int N, ll M) : fac(N, 1), ifac(N, 1), Mod(M)
	{
		for (int i = 2; i < N; ++i)
			fac[i] = mul(fac[i - 1], i), ifac[i] = mul(M - M / i, ifac[M % i]);
		for (int i = 2; i < N; ++i)
			ifac[i] = mul(ifac[i], ifac[i - 1]);
	}
	ll c(int n, int m)
	{
		return m < 0 ? n == m : mul(mul(fac[n], ifac[m]), ifac[n - m]);
	}
} f(N << 1, 1e9 + 7);
ll cal(char a[], vector<int> c)
{
	int l = strlen(a), sum = c[0] + c[1] + c[2] + c[3];
	if (c[2] > c[1] + 1 || c[2] < c[1] || l < sum + 1)
		return 0;
	if (l > sum + 1)
		return f.mul(f.c(c[1] + c[3], c[1]), f.c(c[0] + c[2] - 1, c[2] - 1));
	ll ans = 0;
	for (int i = 1; a[i]; ++i)
	{
		int now = (a[i - 1] - '0' << 1) + a[i] - '0';
		if (a[i] != '0' && c[now - 1])
		{
			--c[now - 1];
			ans = (ans + f.mul(f.c(c[1] + c[3] - 1, c[1] - 1), f.c(c[0] + c[2], c[2]))) % f.M;
			++c[now - 1];
		}
		if (--c[now] < 0)
			break;
	}
	return ans;
}
ll check(char a[], vector<int> c)
{
	int l = strlen(a), sum = c[0] + c[1] + c[2] + c[3];
	if (c[2] > c[1] + 1 || c[2] < c[1] || l != sum + 1)
		return 0;
	for (int i = 1; a[i]; ++i)
		if (--c[(a[i - 1] - '0' << 1) + a[i] - '0'] < 0)
			return 0;
	return 1;
}
char s[2][N];
vector<int> c(4);
int main()
{
	scanf("%s%s%d%d%d%d", s[0], s[1], &c[0], &c[1], &c[2], &c[3]);
	printf("%lld", ((cal(s[1], c) - cal(s[0], c) + check(s[1], c)) % f.M + f.M) % f.M);
}

Palindrome Pairs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
unordered_map<ll, ll> mp;
char s[1000009];
ll m, n;
int main()
{
	for (scanf("%lld", &n); n--;)
	{
		scanf("%s", s);
		for (int i = m = 0; s[i]; ++i)
			m ^= 1 << s[i] - 'a';
		++mp[m];
	}
	m = 0;
	for (auto it : mp)
	{
		m += it.second * (it.second - 1);
		for (int i = 1 << 25; i; i >>= 1)
			if (mp.count(it.first ^ i))
				m += it.second * mp[it.first ^ i];
	}
	printf("%lld", m >> 1);
}
Loading comments...