post on 10 Aug 2019 about 5284words require 18min
CC BY 4.0 (除特别声明或转载文章外)
如果这篇博客帮助到你,可以请我喝一杯咖啡~
记$\frac{1}{n}f(n)$为所求期望,则$f(n)=\sum_{i=1}^ng(i)$。
其中$g(n)=h(n)+\sum_{i=0}^n\frac{C_n^i}{2^n}g(i)=h(n)+\sum_{i=0}^{n-1}\frac{C_n^i}{2^n}g(i)+\frac{g(n)}{2^n}$,移项得$g(n)=\frac{h(n)+\sum_{i=0}^{n-1}\frac{C_n^i}{2^n}g(i)}{2^n-1}$,表示长度固定为$n$的序列逆序对之和的期望。
而$h(n)=\frac{2^n}{4}n(n-1)$表示长度为$n$的排列逆序对数量的期望。至此结束。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
struct Mod
{
const ll M;
Mod(ll M) : M(M) {}
ll qadd(ll &a, ll b) const { return a += b, a < M ? a : a - M; }
ll add(ll a, ll b) const { return qadd(a = (a + b) % M, M); }
ll mul(ll a, ll b) const { return add(a * b, M); }
ll pow(ll a, ll b) const
{
ll r = 1;
for (a = add(a, M); b; b >>= 1, a = mul(a, a))
if (b & 1)
r = mul(r, a);
return r;
}
ll inv(ll a) const { return pow(a, M - 2); }
};
struct Factorial : Mod
{
vector<ll> fac, ifac;
Factorial(int N, ll M) : fac(N, 1), ifac(N, 1), Mod(M)
{
for (int i = 2; i < N; ++i)
fac[i] = mul(fac[i - 1], i), ifac[i] = mul(M - M / i, ifac[M % i]);
for (int i = 2; i < N; ++i)
ifac[i] = mul(ifac[i], ifac[i - 1]);
}
ll c(int n, int m) { return mul(mul(fac[n], ifac[m]), ifac[n - m]); }
ll inv(int t) { return mul(fac[t - 1], ifac[t]); }
} F(4095, 998244353);
int main()
{
vector<ll> g(3001, 0), f(g);
for (ll i = 2; i < g.size(); ++i)
{
g[i] = F.mul(F.mul(F.pow(2, i), F.inv(4)), F.mul(i, i - 1));
for (ll j = 0; j < i; ++j)
g[i] = F.add(g[i], F.mul(F.c(i, j), g[j]));
g[i] = F.mul(g[i], F.Mod::inv(F.add(F.pow(2, i), -1)));
f[i] = F.add(f[i - 1], g[i]);
}
for (ll n; ~scanf("%lld", &n);)
printf("%lld\n", F.mul(f[n], F.inv(n)));
}
经典最小割模型。彭天翼的《浅析一类最小割问题》,以及参考。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll INF = 1e18;
struct Graph
{
struct Vertex
{
vector<int> o;
};
struct Edge
{
int first, second;
ll cap;
};
vector<Vertex> v;
vector<Edge> e;
Graph(int n) : v(n) {}
void add(const Edge &ed)
{
v[ed.first].o.push_back(e.size());
e.push_back(ed);
}
};
struct ISAP : Graph
{
ll flow;
vector<ll> f;
vector<int> h, cur, gap;
ISAP(int n) : Graph(n) {}
void add(Edge ed)
{
Graph::add(ed);
swap(ed.first, ed.second), ed.cap = 0;
Graph::add(ed);
}
ll dfs(int s, int u, int t, ll r)
{
if (r == 0 || u == t)
return r;
ll _f, _r = 0;
for (int &i = cur[u], k; i < v[u].o.size(); ++i)
if (k = v[u].o[i], h[u] == h[e[k].second] + 1)
{
_f = dfs(s, e[k].second, t, min(r - _r, e[k].cap - f[k]));
f[k] += _f, f[k ^ 1] -= _f, _r += _f;
if (_r == r || h[s] >= v.size())
return _r;
}
if (!--gap[h[u]])
h[s] = v.size();
return ++gap[++h[u]], cur[u] = 0, _r;
}
void ask(int s, int t)
{
h.assign(v.size(), 0);
cur.assign(v.size(), 0);
gap.assign(v.size() + 2, 0);
for (f.assign(e.size(), flow = 0); h[s] < v.size();)
flow += dfs(s, s, t, INF);
}
};
int main()
{
for (int n, m; ~scanf("%d%d", &n, &m);)
{
ISAP g(n + 2);
ll ans = 0;
for (int i = 0, u, v, a, b, c; i < m; ++i)
{
scanf("%d%d%d%d%d", &u, &v, &a, &b, &c);
g.add({0, u, a + b});
g.add({u, n + 1, c + b});
g.add({u, v, a + c - 2 * b});
swap(u, v);
g.add({0, u, a + b});
g.add({u, n + 1, c + b});
g.add({u, v, a + c - 2 * b});
ans += a + b + c;
}
g.ask(0, n + 1);
printf("%lld\n", ans - g.flow / 2);
}
}
居然 WA 了一发…大于模数的时候结果就是 0。
1
2
3
4
5
6
7
8
9
10
11
12
13
#include <stdio.h>
typedef long long ll;
int main()
{
for (ll n, M = 1e6 + 3, ans; ~scanf("%lld", &n); printf("%lld\n", ans))
{
if (n < M)
for (ll i = ans = 1; i <= n; ++i)
ans = ans * i % M;
else
ans = 0;
}
}
由于整数值域内大于四十九个数一定可以构成一个三角形(斐波拉契数列四十多项之后超过值域),于是线段树维护区间最大的四十九个数,然后暴力检验即可。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 9, NPOS = -1;
int n, q, a[N];
struct SegmentTree
{
struct Seg
{
int l, r, siz, a[49];
friend Seg up(const Seg &lc, const Seg &rc)
{
Seg ans;
ans.l = lc.l;
ans.r = rc.r;
ans.siz = 0;
int i = 0, j = 0;
while (ans.siz < 49 && i < lc.siz && j < rc.siz)
ans.a[ans.siz++] = lc.a[i] > rc.a[j] ? lc.a[i++] : rc.a[j++];
while (ans.siz < 49 && i < lc.siz)
ans.a[ans.siz++] = lc.a[i++];
while (ans.siz < 49 && j < rc.siz)
ans.a[ans.siz++] = rc.a[j++];
return ans;
}
};
struct Node : Seg
{
int lc, rc;
};
vector<Node> v;
SegmentTree(int l, int r) { v.reserve(r - l + 9 << 1), build(l, r); }
void build(int l, int r)
{
int rt = v.size();
v.push_back({});
if (l >= r)
{
v[rt].lc = v[rt].rc = NPOS;
v[rt].l = l, v[rt].r = r;
v[rt].siz = 1, v[rt].a[0] = a[l];
return;
}
int m = l + r >> 1;
v[rt].lc = v.size(), build(l, m);
v[rt].rc = v.size(), build(m + 1, r);
v[rt].Seg::operator=(up(v[v[rt].lc], v[v[rt].rc]));
}
Seg ask(int l, int r, int rt = 0)
{
if (l <= v[rt].l && v[rt].r <= r)
return v[rt];
if (r <= v[v[rt].lc].r)
return ask(l, r, v[rt].lc);
if (l >= v[v[rt].rc].l)
return ask(l, r, v[rt].rc);
return up(ask(l, v[v[rt].lc].r, v[rt].lc), ask(v[v[rt].rc].l, r, v[rt].rc));
}
};
int main()
{
while (~scanf("%d%d", &n, &q))
{
for (int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
SegmentTree t(1, n);
for (int i = 1, l, r; i <= q; ++i)
{
scanf("%d%d", &l, &r);
SegmentTree::Seg ret = t.ask(l, r);
long long ans = -1;
for (int i = 2; i < ret.siz; ++i)
if (ret.a[i - 2] < ret.a[i - 1] + ret.a[i])
{
ans = (long long)ret.a[i] + ret.a[i - 1] + ret.a[i - 2];
break;
}
printf("%lld\n", ans);
}
}
}
Related posts