Menu

2019 Multi-University Training Contest 7

post on 19 Aug 2019 about 11605words require 39min
CC BY 4.0 (除特别声明或转载文章外)
如果这篇博客帮助到你,可以请我喝一杯咖啡~

A + B = C

记$A=a\cdot 10^x,B=b\cdot 10^y, C=c\cdot 10^z$,不妨$A>B$,则$A>=C/2$。于是 A 的十进制位数要么和 C 相等,要么比 C 小 1。然后分别做一个高精度减法,判断这个差值可不可以用 B 加若干个 0 得到即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#include <bits/stdc++.h>
using namespace std;
struct Wint : deque<int> //继承vector
{
	static const int width = 1, base = 1e1;
	Wint(unsigned long long n = 0) //普通初始化,当整型数和Wint同时运算时会提升至Wint
	{
		for (; n; n /= base)
			push_back(n % base);
	}
	explicit Wint(const string &s) //字符串初始化函数,未判断字符串合法情况
	{
		for (int len = int(s.size() - 1) / width + 1, b, e, i = 0; i < len; ++i)
			for (e = s.size() - i * width, b = max(0, e - width), push_back(0); b != e; ++b)
				back() = back() * 10 + s[b] - '0';
		trim(0);
	}
	Wint &trim(bool up = 1) //去前导0,是否需要进位,很常用的小函数,为方便返回自身
	{
		for (int i = 1; up && i < size(); ++i)
		{
			if ((*this)[i - 1] < 0)
				--(*this)[i], (*this)[i - 1] += base;
			if ((*this)[i - 1] >= base)
				(*this)[i] += (*this)[i - 1] / base, (*this)[i - 1] %= base;
		}
		while (!empty() && back() <= 0)
			pop_back();
		for (; up && !empty() && back() >= base; (*this)[size() - 2] %= base)
			push_back(back() / base);
		return *this;
	}
	friend istream &operator>>(istream &is, Wint &n)
	{
		string s; //懒
		return is >> s, n = Wint(s), is;
	}
	friend ostream &operator<<(ostream &os, const Wint &n)
	{
		if (n.empty())
			return os.put('0');
		os << n.back();
		char ch = os.fill('0');
		for (int i = n.size() - 2; ~i; --i)
			os.width(n.width), os << n[i];
		return os.fill(ch), os;
	}
	friend bool operator<(const Wint &a, const Wint &b)
	{
		if (a.size() != b.size())
			return a.size() < b.size();
		for (int i = a.size() - 1; ~i; --i)
			if (a[i] != b[i])
				return a[i] < b[i];
		return 0;
	}
	friend bool operator>(const Wint &a, const Wint &b) { return b < a; }
	friend bool operator<=(const Wint &a, const Wint &b) { return !(a > b); }
	friend bool operator>=(const Wint &a, const Wint &b) { return !(a < b); }
	Wint &operator+=(const Wint &b)
	{
		if (size() < b.size())
			resize(b.size()); //保证有足够的位数
		for (int i = 0; i < b.size(); ++i)
			(*this)[i] += b[i];
		return trim(); //单独进位防自运算
	}
	friend Wint operator+(Wint a, const Wint &b) { return a += b; }
	Wint &operator++() { return *this += 1; } //前置版本,懒
	Wint operator++(int)					  //后置版本
	{
		Wint b(*this);
		return ++*this, b;
	}
	Wint &operator-=(const Wint &b) //a<b会使a变为0
	{
		if (size() < b.size())
			resize(b.size()); //保证有足够的位数
		for (int i = 0; i < b.size(); ++i)
			(*this)[i] -= b[i];
		return trim(); //单独进位防自运算
	}
	friend Wint operator-(Wint a, const Wint &b) { return a -= b; }
	Wint &operator--() { return *this -= 1; } //前置版本,懒
	Wint operator--(int)					  //后置版本
	{
		Wint b(*this);
		return --*this, b;
	}
	Wint &operator*=(const Wint &b) //高精度乘法,常规写法
	{
		Wint c;
		c.assign(size() + b.size(), 0);
		for (int j = 0, k, l; j < b.size(); ++j)
			if (b[j]) //稀疏优化,特殊情况很有效
				for (int i = 0; i < size(); ++i)
				{
					unsigned long long n = (*this)[i];
					for (n *= b[j], k = i + j; n; n /= base)
						c[k++] += n % base;
					for (l = i + j; c[l] >= base || l + 1 < k; c[l++] %= base)
						c[l + 1] += c[l] / base;
				}
		return swap(c), trim(0);
	}
	/*
	Wint& operator*=(const Wint &b)//一种效率略高但对位宽有限制的写法
	{
		vector<unsigned long long> n(size()+b.size(),0);//防爆int
		//乘法算完后统一进位效率高,防止乘法溢出(unsigned long long范围0~1.8e19)
		//位宽为9时size()不能超过18(十进制162位),位宽为8时size()不能超过1800(十进制14400位)等等。
		for(int j=0; j!=b.size(); ++j)
			if(b[j])//稀疏优化,特殊情况很有效
				for(int i=0; i!=size(); ++i)
					n[i+j]+=(unsigned long long)(*this)[i]*b[j];
		for(int i=1; i<n.size(); ++i)//这里用<防止位数0,单独进位防自运算
			n[i]+=n[i-1]/base,n[i-1]%=base;
		return assign(n.begin(),n.end()),trim(0);
	}
	Wint& operator*=(const Wint &b)//fft优化乘法,注意double仅15位有效数字,调小Wint::width不超过2,计算自2*log2(base)+2*log2(len)<53
	{
		vector<ll> ax(begin(),end()),bx(b.begin(),b.end());
		ax=FFT(size()+b.size()).ask(ax,bx);
		for(int i=1; i<ax.size(); ++i)
			ax[i]+=ax[i-1]/base,ax[i-1]%=base;
		return assign(ax.begin(),ax.end()),trim(0);
	}
	Wint& operator*=(const Wint &b)//ntt优化,Wint::width不超过2
	{
		vector<ll> ax(begin(),end()),bx(b.begin(),b.end());
		ax=FNTT(size()+b.size(),(7<<26)+1,3).ask(ax,bx);
		for(int i=1; i<ax.size(); ++i)
			ax[i]+=ax[i-1]/base,ax[i-1]%=base;
		return assign(ax.begin(),ax.end()),trim(0);
	}
	*/
	friend Wint operator*(Wint a, const Wint &b) { return a *= b; }
	Wint &operator/=(Wint b)
	{
		Wint r, c, d = b.base / (b.back() + 1);
		*this *= d, b *= d, c.assign(size(), 0);
		for (int i = size() - 1; ~i; --i)
		{
			r.insert(r.begin(), (*this)[i]);
			unsigned long long s = 0;
			for (int j = b.size(); j + 1 >= b.size(); --j) //b.size()==0肯定第一行就出问题的
				s = s * b.base + (j < r.size() ? r[j] : 0);
			for (d = c[i] = s / b.back(), d *= b; r < d; r += b)
				--c[i];
			r -= d;
		}
		return swap(c), trim(0); //r为加倍后的余数,可通过高精度除低精度得到真正余数,此处略
	}
	friend Wint operator/(Wint a, const Wint &b) { return a /= b; }
	Wint &operator%=(const Wint &b) { return *this -= *this / b * b; }
	friend Wint operator%(Wint a, const Wint &b) { return a %= b; }
	//开平方,改自ZJU模板
	bool cmp(long long c, int d, const Wint &b) const
	{
		if ((int)b.size() - (int)size() < d + 1 && c)
			return 1;
		long long t = 0;
		for (int i = b.size() - 1, lo = -(base << 1); lo <= t && t <= 0 && ~i; --i)
			if (t = t * base - b[i], 0 <= i - d - 1 && i - d - 1 < size())
				t += (*this)[i - d - 1] * c;
		return t > 0;
	}
	Wint &sub(const Wint &b, long long k, int d)
	{
		int l = b.size() + d;
		for (int i = d + 1; i <= l; ++i)
		{
			long long tmp = (*this)[i] - k * b[i - d - 1];
			if (tmp < 0)
			{
				(*this)[i + 1] += (tmp - base + 1) / base;
				(*this)[i] = tmp - (tmp - base + 1) / base * base;
			}
			else
				(*this)[i] = tmp;
		}
		for (int i = l + 1; i < size() && (*this)[i] < 0; ++i)
		{
			(*this)[i + 1] += ((*this)[i] - base + 1) / base;
			(*this)[i] -= ((*this)[i] - base + 1) / base * base;
		}
		return trim(0);
	}
	friend Wint sqrt(Wint a)
	{
		Wint n;
		n.assign(a.size() + 1 >> 1, 0);
		for (int i = n.size() - 1, l, r; ~i; --i)
		{
			for (l = 0, r = a.base, n[i] = l + r >> 1; r - l > 1; n[i] = l + r >> 1)
			{
				if (n.cmp(n[i], i - 1, a))
					r = n[i];
				else
					l = n[i];
			}
			a.sub(n, n[i], i - 1), n[i] += l + r >> 1;
		}
		for (int i = 0; i < n.size(); ++i)
			n[i] >>= 1;
		return n.trim(0);
	}
	/*
	friend Wint sqrt(const Wint &a)//常规牛顿迭代实现的开平方算法,慢但是好敲
	{
		Wint b=a,c=(b+1)/2;
		while(b!=c)swap(b,c),c=(b+a/b)/2;
		return c;
	}
	friend Wint sqrt(const Wint &a)
	{
		Wint ret,t;
		ret.assign((a.size()+1)>>1,0);
		for(int i=ret.size()-1,l,r; ~i; --i)
		{
			for(l=0,r=a.base; r-l>1;)
			{
				ret[i]=l+(r-l)/2;
				t=ret*ret;
				if(a<t)r=ret[i];
				else l=ret[i];
			}
			if(!l&&i==ret.size()-1)ret.pop_back();
			else ret[i]=l;
		}
		return ret;
	}
	*/
};
int ok(Wint a, Wint b, Wint c, int &x, int &y, int &z)
{
	x = y = z = 0;
	while (a.size() < c.size())
		a.push_front(0), ++x;
	while (c.size() < a.size())
		c.push_front(0), ++z;
	if (c > a)
	{
		int tx = x, ty = y, tz = z;
		Wint d = c - a;
		while (d.size() < b.size())
			d.push_front(0), ++x, ++z;
		while (b.size() < d.size())
			b.push_front(0), ++y;
		if (d == b)
			return 1;
		x = tx, y = ty, z = tz;
	}
	c.push_front(0), ++z;
	{
		int tx = x, ty = y, tz = z;
		Wint d = c - a;
		while (d.size() < b.size())
			d.push_front(0), ++x, ++z;
		while (b.size() < d.size())
			b.push_front(0), ++y;
		if (d == b)
			return 1;
		x = tx, y = ty, z = tz;
	}
	return 0;
}
const int N = 1e5 + 9;
char s[N];
Wint a, b, c;
int t, x, y, z;
int main()
{
	for (scanf("%d", &t); t--;)
	{
		scanf("%s", s), a = Wint(s);
		scanf("%s", s), b = Wint(s);
		scanf("%s", s), c = Wint(s);
		if (ok(a, b, c, x, y, z) || ok(b, a, c, y, x, z))
		{
			while (x && y && z && (x > 1e6 || y > 1e6 || z > 1e6))
				--x, --y, --z;
			if (0 <= x && x <= 1e6 && 0 <= y && y <= 1e6 && 0 <= z && z <= 1e6)
				printf("%d %d %d\n", x, y, z);
			else
				printf("-1\n");
		}
		else
			printf("-1\n");
	}
}

Final Exam

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll t, n, m, k;
int main()
{
	for (scanf("%d", &t); t--;)
	{
		scanf("%lld%lld%lld", &n, &m, &k);
		ll f = n - k + 1,
		   l = m / f, h = m / f + 1,
		   ch = m - l * f, cl = f - ch,
		   ans = l * (cl - 1ll) + h * (n - (cl - 1));
		printf("%lld\n", ans);
	}
}

Halt Hater

三种情况下讨论一下…

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll made(ll a, ll b, ll x, ll y)
{
	if (x > 0)
	{
		if (y >= 0)
		{
			if (y <= x - 1)
				return (a * y + b * (x - y - 1));
			else
				return (a * (x - 1) + b * (y - x + 1));
		}
		else
		{
			if (y >= -x)
				return (a * (-y - 1) + b * (x + y));
			else
				return (a * (x - 1) + b * (-y - x));
		}
	}
	else
	{
		if (y >= 0)
		{
			if (y <= -x)
				return (a * y + b * (-x - y));
			else
				return (a * (-x) + b * (y + x));
		}
		else
		{
			if (y <= x - 1)
				return (a * (-x) + b * (x - y - 1));
			else
				return (a * (-y - 1) + b * (y - x + 1));
		}
	}
}
int main()
{
	ll t, a, b, x, y;
	for (scanf("%lld", &t); t--;)
	{
		scanf("%lld%lld%lld%lld", &a, &b, &x, &y);
		if (b > a)
			b = a;
		printf("%lld\n", made(min(a, 2 * b), b, x, y));
	}
}

Just Repeat

贪心。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include <bits/stdc++.h>
using namespace std;
typedef unsigned long long llu;
const llu N = 1e5 + 9;
llu rng(llu &k1, llu &k2)
{
	llu k3 = k1, k4 = k2;
	k1 = k4;
	k3 ^= k3 << 23;
	k2 = k3 ^ k4 ^ (k3 >> 17) ^ (k4 >> 26);
	return k2 + k4;
}
pair<int, pair<int, int>> q[N << 1];
int t, n, m, p, a[N], b[N];
int main()
{
	for (scanf("%d", &t); t--;)
	{
		scanf("%d%d%d", &n, &m, &p);
		if (p == 1)
		{
			for (int i = 0; i < n; ++i)
				scanf("%d", &a[i]);
			for (int i = 0; i < m; ++i)
				scanf("%d", &b[i]);
		}
		else
		{
			llu k1, k2, mod;
			scanf("%llu%llu%llu", &k1, &k2, &mod);
			for (int i = 0; i < n; ++i)
				a[i] = rng(k1, k2) % mod;
			scanf("%llu%llu%llu", &k1, &k2, &mod);
			for (int i = 0; i < m; ++i)
				b[i] = rng(k1, k2) % mod;
		}
		sort(a, a + n);
		sort(b, b + m);
		int suma = 0, sumb = 0, siz = 0;
		for (int i = 0, j = 0; i < n || j < m;)
		{
			if (i < n && j < m && a[i] == b[j])
			{
				pair<int, pair<int, int>> p;
				do
					++p.first, ++p.second.first, ++i;
				while (i < n && a[i] == a[i - 1]);
				do
					++p.first, ++p.second.second, ++j;
				while (j < m && b[j] == b[j - 1]);
				q[siz++] = p;
			}
			else if ((i < n && j < m && a[i] < b[j]) || j >= m)
				++suma, ++i;
			else
				++sumb, ++j;
		}
		sort(q, q + siz, greater<pair<int, pair<int, int>>>());
		for (int i = 0; i < siz; ++i)
		{
			if (i & 1)
				sumb += q[i].second.second;
			else
				suma += q[i].second.first;
		}
		printf(suma > sumb ? "Cuber QQ\n" : "Quber CC\n");
	}
}

Kejin Player

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 5e5 + 9;
struct Mod
{
	const ll M;
	Mod(ll M) : M(M) {}
	ll qadd(ll &a, ll b) const { return a += b, a < M ? a : a - M; }
	ll add(ll a, ll b) const { return qadd(a = (a + b) % M, M); }
	ll mul(ll a, ll b) const { return add(a * b, M); }
	ll pow(ll a, ll b) const
	{
		ll r = 1;
		for (a = add(a, M); b; b >>= 1, a = mul(a, a))
			if (b & 1)
				r = mul(r, a);
		return r;
	}
	ll inv(ll a) const { return pow(a, M - 2); }
} M(1e9 + 7);
ll n, q, t, x[N], f[N], r[N], s[N], a[N];
int main()
{
	for (scanf("%lld", &t); t--;)
	{
		scanf("%lld%lld", &n, &q);
		for (int i = 1; i <= n; ++i)
			scanf("%lld%lld%d%lld", &r[i], &s[i], &x[i], &a[i]);
		for (int i = 2; i <= n + 1; ++i)
		{
			ll pi = M.mul(r[i - 1], M.inv(s[i - 1]));
			ll pini = M.mul(s[i - 1], M.inv(r[i - 1]));
			if (i - 1 == x[i - 1])
				f[i] = M.add(f[i - 1], a[i - 1] * pini);
			else
				f[i] = M.mul(f[i - 1] + a[i - 1] + M.mul(pi, f[x[i - 1]]) - f[x[i - 1]], pini);
		}
		for (int i = 1, l, r; i <= q; ++i)
		{
			scanf("%d%d", &l, &r);
			printf("%lld\n", M.add(f[r], -f[l]));
		}
	}
}
Loading comments...